Fuzzy Neural Networks are Overlapping
نویسنده
چکیده
Fuzzy neural networks can be trained with crisp and fuzzy data. J. Buckley and Y. Hayashi have shown that these networks are monotonic (see 2]) when extension principle based operations are used to compute the network output. In this paper we show that these networks are also overlapping. This property provides us with a means to theoretically analyse the output behaviour of fuzzy neural networks. We brieey present a learning algorithm. Finally we nd our theoretical observations connrmed testing the trained network.
منابع مشابه
Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملRole of Different Fuzzy Min- Max Neural Network for Pattern Classification
Different neural networks related to Fuzzy min-max (FMM) has been studied and amongst all, Enhanced Fuzzy min-max (EFMM) neural network is most recent. For classification of patterns a new Enhanced Fuzzy Min-Max (EFMM) algorithm has been studied. The aim of EFMM is to improve the performance and minimize the restrictions that are possessed by original fuzzy min-max (FMM) network. Three heuristi...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کامل